中科院沈阳自动化所的Wang利用深度强化学习算法和视觉感知相结合的方法来完成移动机器人(如图3(a))在非结构环境下的移动操作[7]。作者将移动操作过程看做一个标准的强化学习问题,先通过双目相机通过DOPE获取目标物体的6D姿态p以及机器人本体的当前状态st,接着通过基于PPO的强化学习算法预测机器人的本体,机械臂以及机械手的运动并控制机器人本体运动,后机器人的运动状态st+1和响应rt,其中响应主要包含了整个系统的控制响应rctrl、机械手末端的位置响应rdist以及抓取状态rgrasp(如图3(b))。后作者在仿真环境和真实环境下测试了不同G度下的抓取成功率,在仿真中,立方体的抓取效果好达到了90%的成功率,而球类物体较差仅有60%左右,而在实际测试过程中,在姿态估计正确的前提下可实现目标物体的成功抓取(如图3(c)(d))。
![]() |
商用机器人 Disinfection Robot 展厅机器人 智能垃圾站 轮式机器人底盘 迎宾机器人 移动机器人底盘 讲解机器人 紫外线消毒机器人 大屏机器人 雾化消毒机器人 服务机器人底盘 智能送餐机器人 雾化消毒机 机器人OEM代工厂 消毒机器人排名 智能配送机器人 图书馆机器人 导引机器人 移动消毒机器人 导诊机器人 迎宾接待机器人 前台机器人 导览机器人 酒店送物机器人 云迹科技润机器人 云迹酒店机器人 智能导诊机器人 |