目前 ,足式机器人技术的研发基于强化学习的 方式 ,已经非常成熟 ,并能够达到令人满意的 效果。足式机器人的优势在于其对复杂地形的 适应性 ,能够自如应对楼梯、斜坡和崎岖路面 等城市常见地形。通过算法创新 ,足式机器人 能够实现超轻步态 ,确保了移动的灵活性 ,同 时有效降低了在人居环境中的运行噪音 。此 外 ,足式机器人能够实现站立、行走、跑步等 多种移动方式的无缝切换 ,并优化了能量消耗 的运动控制,使其步态更自然轻盈。
足式机器人的另一大优势在于其与人体结构的 相似性 ,这使得机器人能够更好地利用人类运 动数据进行学习训练 ,并在人机交互场景中创 造更自然、友好的体验 。在感知导航方面, 足式机器人通过G精度传感器获取环境信息 ,实时构建3D语义地图 ,实现准确定位和 灵活通行。
核心优势:
1. 地形适应性:足式机器人能够适应复杂多变的地形,包括楼梯、不平坦地面和户外 环境。
2. 稳定性:足式机器人通过多个接触点与地 面接触,提供了更好的稳定性和抓地力。
3. 灵活性:足式机器人可以模拟人类的行走 方式,能够在狭窄或拥挤的空间中灵活移动。
4. 避障能力:足式机器人能够更容易地避开障碍物,尤其是在动态变化的环境中。
适用场景:
• 需要跨越障碍物或在不平坦地面上移动的场景 ,如跨楼层服务机器人、客房服务机器人等。
• 户外环境,如广场等公共服务场所等。
• 需要与人类紧密互动并模拟人类行为的机器人,如人形服务机器人。
轮式机器人在平坦的地面上移动迅速且能耗低,制造和维护成本较低,适合大规模部署,技术相对成熟,易于实现标准化和规模化生产,室内环境,如仓库,医院,商场,办公室等
在多技术栈的驱动下,以多模态感知, 自主决策,灵巧操作为核心特征的具身智能 ,将成为推动全栈式智能生态发展的核心驱动力,移动技术作为核心技术栈之一 ,将发挥至关重要的作用
不需要对电梯进行任何物理硬件改造;能够与不同品牌和型号的电梯系统兼容;提供了强大的数据处理和决策支持;允许远程管理和软件更新;支持灵活的机器人乘梯行为配置
高适配度-能够与市面上90%的电梯型号兼容;高稳定性-在没有网络连接的情况下稳定运行;可复用性强-可以供多种不同类型的机器人多次复用;安全防护强化,有效防止信号劫持与数据泄露
通过物联网技术支持服务机器人与各类设备(如电梯,门禁系统, 电话系统等)建立实时连接;实时收集周围环境和设备的数据为机器人提供智能决策支持
开发一套标准化的硬件接口和软件API ,使得不同厂商和不同功能的模块能 够无缝联通和协同工作;制定和遵循行业内一致的标 和协议;采用标准化的数据交换格式和通信协议
模块化设计的核心优势在于灵活性;模块化设计可以有效降低研发和运营成本;模块化设计为技术创新提供了良好的平台;模块化设计为统一行业标准和协议提供了条件
服务机器 人模块化设计以多个软硬件模块—移动模块、操作模块、交互模块、传感模块和数据处理与通信模块为核心,提升在不同场景中能够灵活应对复杂任务的能力
开放性的全栈式智能服务机器人生态是一个技术框架和商业模式的创新综合体,构建一个多面互通、无缝衔接的智能服务机器人生态,来实现服务机器人在多样化应用场景中的深度融合和广泛应用
腱绳实现灵巧手柔性驱动与仿生结构;触觉传感器信号灵敏性、动态响应速度、柔性贴合能力与系统集成度;微型丝杠将电机的旋转运动转换为G精度线性运动
灵巧手是人 形机器人核心配件之一,是机器人触达真实物理世界的部件,巧手有望成为机器人下一个迭代方向,传感器使用数量和种类有望进一步提升
3D打印技术还可应用于人形机器人重要零部件的升级迭代;3D打印在人形机器人的设计端还可实现快速原型设计;3D打印还能够匹配人形机器人的个性化定制需求