MLOps落地开花,AI资产沉淀和治理成为实践新风向。随着业界对人工智能研发效率、团队协作、安全保障等需求进一步提升,整个MLOps产业实践呈现出“内涵很明确、落地很困难”的现状。
从技术内涵来看, MLOps的核心和要求已明确,即围绕“一个基础、两个关键、三个提升”,逐步建设从需求、开发、交付到模型运营的全生命周期运营管理机制。一个基础是指持续交付,通过搭建工厂流水线式的模型生产方式,提G规模化生产效率。许多头部企业都已开始实践模式的持续交付,部分企业模型研发效率提升超过40%。两个关键是指持续训练和持续监控,通过持续训练和持续监控搭建G效闭环的运营管理体系,提G机器学习可观察性,保证模型质量,增加赋能效果。
三个提升是指数据管理、特征管理、模型管理能力的提升。对数据、特征和模型等AI资产加以沉淀、安全管控和风险治理,提升企业级AI治理能力,已成为MLOps新风向。
从落地现状来看,持续交付、持续训练、持续监控和模型治理难度依次提升,产业界当前尚处在提升持续交付和持续监控能力过程中,模型治理等仅有少量探索,未来仍然是AI工程化的重点方向。 v 此外,MLOps的工具市场持续火热,端到端的MLOps一体化工具和细分场景的专项工具都非常火热,端到端工具追求大而全的功能集,专项工具在局部或某些场景下功能和性能较好,例如流水线编排、模型监控、特征存储、可观测等工具,未来MLOps相关工具可能会成为AI软件市场的重要赛道。
![]() |
机器人招商 Disinfection Robot 机器人公司 机器人应用 智能医疗 物联网 机器人排名 机器人企业 机器人政策 教育机器人 迎宾机器人 机器人开发 独角兽 消毒机器人品牌 消毒机器人 合理用药 地图 |