人工智能中台重塑企业智能化转型的能力底座。随着企业从重视人工智能的“研发”,到“研发-运营”并重,AI开发平台也逐渐向AI中台演进。
理念层面,AI中台更加重视管理和运营,技术层面,AI中台G度集约了AI能力,具有规模化、标准化、可扩展等特点。其中,规模化是指整合了丰富的人工智能开发、部署、测试、运维等能力,标准化是指将异构的软硬件环境封装为标准化的界面,可扩展是指可以不断适配新的技术和工具,保证AI技术的动态演进。
通过与数据中台、云平台、业务中台、运营平台的打通,AI中台正在加速融入企业的技术平台体系中。当前阶段,大型的行业企业正在积J构建AI中台体系,通过G效的组织管理实践,推动全场景全L域的AI赋能。
到端的MLOps一体化工具和细分场景的专项工具都非常火热,端到端工具追求大而全的功能集,专项工具在局部或某些场景下功能和性能较好
AI软件设施在近两年成为产业焦点,AI开源框架生态,预训练大模型体系,AI软件平台生态等内容都得到了长足的发展,像水电一样成为触手可得的普惠资源
智能文档处理、智能会议、知识管理、智能客服等各类企业智能应用不断发展,多面赋能企业办公、管理、决策、风控、营销、服务等各个环节
头部科技企业先后发布了AI治理战略和治理体系,成立了相关委员会和工作组,聚焦企业层面的AI治理和风险管理体系,可信AI技术和保障工具也在蓬勃发展
人工智能市场收支规模达850厅美元,预测,2022年该市场规模将同比增长约20%至 1017厅美元,并将于2025年突破2000厅美元大关, CAGR 达24.5%
调度决策外卖调度系统困住骑手;个性化推荐电商场景下的信息茧房和马太效应;内容治理如何守护清朗健康的网络环境;人工智能可以放心使用吗
数据不完备和滥用风险突出而损害用户的权益;人工智能算法存在固有缺陷在可解释性鲁棒性偏见歧视等方面尚存在局限;企业人工智能管理体系不完善
企业作为落实人工智能治理原则的重要主体,形成覆盖人工智能产品全生命周期的风险管理机制,提出了面向可持续发展的人工智能治理基本框架
构建面向可持续发展的人工智能技术体系,推动人工智能技术可用、可靠、可信,其内涵包括提升技术安全和构建技术管理机制两个层面工作
在规划设计阶段机器学习场景中固有的不可预测性,传达实施偏差会进一步加剧;在研发部署阶段模型运行之后的动态更新缺乏足够验证等挑战
G增长:未来五年人工智能市场规模平均增速将超过20%;G集中:软件占比近40%硬件产品占比接近35%;G壁垒:渗透率还不到4%
我国新一代人工智能治理工作框架应整合社会各界对AI社会技术复合体的离散性认知,突破AI包容审慎实践的探索,建立基于“逻辑-秩序-监管“的人工智能治理工作框架