AI与传统科学L域的深度融合,J大拓展该L域解决问题的能力;传统科学L域的进步和对AI技术的需求加速了AI本身的发展;AI4S的研究范围也扩展到了更多基础问题L域
知识和数据双轮驱动的人工智能技术路线展现了强劲的发展潜力,知识的融合应用有效地提升了智能问答,智能推荐,大规模预训练模型等人工智能技术中的效果
器人流程自动化,智能流程管理,低代码应用平台,流程挖掘等工具和平台,衔接起了企业级各类复杂业务场景,其综合应用,互使能是超级自动化发挥效能的重要手段
规模化是指整合了丰富的人工智能开发,部署,测试,运维等能力,标准化是指将异构的软硬件环境封装为标准化的界面,可扩展是指可以不断适配新的技术和工具
到端的MLOps一体化工具和细分场景的专项工具都非常火热,端到端工具追求大而全的功能集,专项工具在局部或某些场景下功能和性能较好
AI软件设施在近两年成为产业焦点,AI开源框架生态,预训练大模型体系,AI软件平台生态等内容都得到了长足的发展,像水电一样成为触手可得的普惠资源
智能文档处理、智能会议、知识管理、智能客服等各类企业智能应用不断发展,多面赋能企业办公、管理、决策、风控、营销、服务等各个环节
头部科技企业先后发布了AI治理战略和治理体系,成立了相关委员会和工作组,聚焦企业层面的AI治理和风险管理体系,可信AI技术和保障工具也在蓬勃发展
人工智能市场收支规模达850厅美元,预测,2022年该市场规模将同比增长约20%至 1017厅美元,并将于2025年突破2000厅美元大关, CAGR 达24.5%
调度决策外卖调度系统困住骑手;个性化推荐电商场景下的信息茧房和马太效应;内容治理如何守护清朗健康的网络环境;人工智能可以放心使用吗
数据不完备和滥用风险突出而损害用户的权益;人工智能算法存在固有缺陷在可解释性鲁棒性偏见歧视等方面尚存在局限;企业人工智能管理体系不完善
企业作为落实人工智能治理原则的重要主体,形成覆盖人工智能产品全生命周期的风险管理机制,提出了面向可持续发展的人工智能治理基本框架